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AbstrncL Resonance Auger procases (AP) in solid samarium after 4d34f  eXcitalianS 
have been studied using electron speclmscopy with synchrotron radiation. The 
N ~ , S O Z , ~ O Z , ~  and N ~ O ~ , ~ N S , I  resonance AP were found to play a significant role in 
excitations corresponding to the low-energy side of the resonance region. Kinetic energy 
shifts relative to the normal Nq02,302, ,  and N ~ , ~ O Z , J N ~ , ~  .e were estimated Io be 1.0 
eV and 1.5 eV, respectively. In excitations corresponding to the main giant resonance the 
normal AP were found to be stronger than in the case of heavier rare eanhs indicating 
stronger continuum-like character for the main resonance in samarium. 

1. Introduction 

The availability of tunable synchrotron radiation has made it possible to excite inner 
shell electrons selectively into unoccupied bound states below the ionization threshold. 
This has led to a growing interest in studying decay processes of these excited states 
during last decade. In general, a resonant photoexcitation can decay in two principal 
ways: either the excited electron takes part directly in the recombination process leading 
to an emission of an outer shell electron, or it remains as a spectator leading to a two- 
hole final state with one electron excited [l-31. In the former case, which is called 
a participator Auger or autoionization process, the final state is the same as in direct 
photoionization of the outer shell involved and it is seen in the photoelectron spectrum 
as increased intensity of the corresponding photopeak. In the latter case, known as a 
resonance AP, the spectator electronwill affect the outgoing Auger electron which is seen 
in the electron spectrum as an Auger electron having slightly different kinetic energy. 
In the resonance Auger process the spectator electron can also shake upldown or  even 
shake off during the recombination process. In gas phase studies (rare gases [&IO] and 
some molecules [2,3,11-14]) it has been found that the resonance AP (with dxerent 
shake phenomena associated) plays a more important role than the autoionization 
process. Recently [U, 161 it has been noticed that the resonance Auger process can he a 
significant decay channel after resonant excitation in solids as well. 

In this paper we shall study the resonance AP in solid samarium after 4d -+ 4f giant 
resonance excitations. As is well known, the absorption spectra of rare earth elements 
near the 4d ionization threshold are characterized by some narrow peaks and a strong 
broad maximum, which may extend several eV above the ionization threshold [17- 
191. The large enhancement of photoahsorption cross section has been interpreted as 
due to the strong interaction between discrete core excited 4d+4f states and the 4d 
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ionization continua [20-241. An excellent review of this giant resonance phenomenon 
has been edited by Connerade et a1 [25]. 

Decay channels and photoionization cross sections near the 4d ionization threshold 
have been extensively studied for both atomic [26-311 and solid [3245] rare earths. 
However, especially for solid rare earths, the role of possible resonance Auger effects has 
not gained much attention, until now. This paper is an extension to our recent studies 
for solid La, Eu, Gd, Tb and Dy [ H I .  

0-P Sairanen and S Ahela 

2. Experimental details 

The experimental work was done at MAX synchrotron radiation laboratory in Lund, 
Sweden The measurements were carried out on BL22 which uses a modified SX- 
7Oetype monochromator [49] and a high-resolution hemispherical analyser. The 
experimental set-up is described in more detail in 1501. Due to a high counting rate only 
a 20 pm exit slit in the monochromator and (in most cases) 75eV constant pass energy 
in the analyser were used, leading to an overall energy resolution less than 0.3 e\! 

The sample films were evaporated in situ from a tungsten wire. A copper plate 
was used as a substrate. The pressure in the preparation chamber was 1-3 x lo-* mbar 
during evaporation, but decreased immediately after evaporation below lo-' mbar. 
During the measurements the background pressurewas less than IO-'"mbar. The purity 
of the sample was controlled regularly by recording a photoelectron spectrum over the 
0 1s and C Is range with 7SOeV photons. No visible change in the control spectra was 
observed. 

In order to determine the 4d+4f resonant energies we first recorded the total 
electron yield spectrum of Sm near the 46 ionization threshold. The photoelectron and 
Auger electron spectra were then recorded using excitation energies below, at and above 
the giant resonance. 

3. Results and discussion 

The electron yield spectrum of solid Sm is shown in figure 1. It is consistent with 
earlier measurements and similar to the bulk photoabsorption spectrum [33,38]. In the 
spectrum some fine structure is visible between 126eV and 133eV photon energies, 
along with the main broad maximum around 140eV, preceded by two shoulders at 
135.SeV and 137eV, and followed by another broad maximum around 149eV photon 
energy. The first ionization energy is reported to be 128.3eV [5l]structure lies on both 
sides of the threshold, whereas both broader maxima are well above the threshold. 

Figure 2 displays the electron spectra of samarium measured with 120eV, 126.5eV 
129eV, 1322eV, 135.5ey 137eV, 140eV, 145eV and 148.8eV photon energies. A 
'continuous'background, discussed in more detail in [46], has been subtracted from the 
original spectra. Energy calibration is based on the binding energies taken from the study 
of Riviere er a1 [51]. 

The pure photoelectron spectrum, taken with 120eV photons and therefore below 
any resonance energies, shows three different line groups: valence and 4f photoemission 
lines from OeV to lOeV binding energies, the 5p photoemission line group between 
16eV and 26 eV binding energies, and 5s photoemission structure from 36 eV to 45 eV 
binding energies. Samarium has two different valence configurations in the solid state, 
namely 4f5(Sd6~)~ for bulk atoms and 4f+'(Sd6~)~ for surface atoms 1521. Thus the 4f 
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Figure 1. The eleclmn yield spectrum of solid samarium. 

emission structure can be divided into two groups: the 4p  -4f4 (bulk) photoemission 
lines from 4.5 eV to 10 eV corresponding mainly to final states 5G and 5D, and the 
4 c  -4fs (surface) emission lines on the low binding energy side corresponding to final 
states 'H, 6F and 6P [53]. The 5p-' and 5s-' photoemission lines are split into seveml 
components due to interaction with the partly filled 4f subshell. The strong sharp peak 
at 49 eV binding energy does not originate from samarium but most probably from MgO 
impurity attached to the sample during preparation. However, this small impurity does 
notdisturbtheeffectsstudied here; onthecontraly,itgivesusagoodintensityreference. 

The resonance spectra in figure 2 undergo large changes with increasing excitation 
energy. 'Ib illustrate these changes we have subtracted the pure photoelectron specaum 
(120eV) from the resonance spectra. We used the impurity peak as an intensity 
reference because it should not resonate in this energy region. The difference spectra 
are presented in figure 3. We can see that at first the 5p and 5s photoemission structures 
grow, whereas the 4f emission structure undergoes an intensity minimum (intensity in the 
first resonance spectra is lower than in the reference spectrum). When the excitation 
energy increases the 4f emission structure begins to dominate. This reveals strong 
autoionization processes at first through 5p and 5s orbitals and later also through a 4f 
orbital. The minimum in the 4f emission intensity can be explained by the overlap of 4d 
and 4f wavefunctions which leads to an asymmetric Fano-type behaviour in the 4f cross 
section. The results are consistent with the cross section studies for atomic samarium 
[26,29] and are therefore expected in solid samarium, too. The intensity variation 
between the different 4f components also agrees well with earlier studies [38]. However, 
the shape of the structure near 5p and 5s photolines also changes showing some structure 
to remain nearly constant in kineticenergy therefore indicating some Auger or resonance 
Augereffects. This structure is especiallystrongat photon energies belowor near the 4d 
ionization limit. In order to study those effects more closely we normalized the reference 
spectrum (120eV) relative to the Sp,,, photoline and subtracted it from the resonance 
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Figure 2. The eleclrnn Spectra n l  solid samarium measured with photon energies (a) 
12OeV, 12fi.SeY 129eY 132.2eY 13S.SeV and (b) 137eY 14OeV l4SeV and 1488eV. 

spectra. These difference spectra are shown in figure 4. 
Before going on it might be useful to discuss briefly the definition of a resonance 

AP because excitation to a partly filled subshell causes some difficulties in separating 
a resonance AP from the corresponding autoionization process when that subshell is 
involved in the decay process. In samarium this concerns the N4,502,3N6,7 resonance 
AP. There, one of the 4f electrons takes part in the decay process leading to a 5p-' one- 
hole final state, the process being phenomenologically similar to the 5p autoionization 
process. The question is whether the 4f electron that takes part in the recombination 
process is the excited one (autoionization) or not (resonance Auger). We shall 
distinguish these processes by the spin of the participating 4f electron. All the 4f 
electrons in samarium have, according to the Hund rule, parallel spins. If the 4f electron 
participating in the decay and the excited electron have opposite spins, the decay process 
is a resonance AP, but if spins are parallel we are dealing with an autoionization process. 
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Figure 3. The difference spectra of solid samarium Figure 4. The difference spectra of solid 
at 126.SeV. 129eV. 132.2eV, 13S.Sand 137eV samarium at 126.5cV, 129eV. 132.2eV. 135.SeV, 
photons. Inlensity normalization is done relative 137eV, 140eV, 14SeV and 148.8eV photons. 
to the impurily peak. Intensify normalization is done relative to the 5py2 

photoline. The dip is due lo  the impurity peak. 

Thus after a resonance AP the 4f orbital is left in an excited state leading to a lower 
kineticenergy for the emitted electron as compared to  the corresponding autoionization 
process. This definition has been discussed more closely in our study of resonance Auger 
effeca in solid Gd and Eu [a]. 

In the spectra in figure 4 two structures can be seen to remain almost constant 
with kinelic energy and one structure to remain constant with binding energy. This 
indicates that the first two stuctures are related to Auger-like processes whereas the 
third structure is caused by an autoionization process. The binding energy of the 
autoionization peak is 24.5eV which agrees well with the reported binding energy of 
5 ~ , / ~  subshell (24.3eV [51]). Since the reference spectrum is normalized relative to the 
5 ~ , , ~  peak, this structure reveals that the 5p,/, component is more strongly involved in 
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the Sp autoionization process than the 5p3,2 component The same effect has also been 
found for other solid rare earths 147,481. The two other structures which in the first 
spectra have kinetic energies 103.0 eV and 81.5 eV, but are shifted in later specaa slightly 
towards lower kineticenergies, can be identified as due to N4,50z,3N6,7 and N4,s02,302,3 
resonance AP, respectively. Figure 5 shows the normal Auger spectrum of solid samarium 
measured with 180eV photons, which is clearly above the resonance energies. The 
N4,sOz,3N6,7 Auger structure can be seen at 101.5eV and the N4,sOz,30z,3 Auger 
structure at 80.5 eV kinetic energy 143,511. The broad structure above 1lOeV is mainly 
caused byN4,SN6,,N6,7 Auger transitions, thesharp peak being due to theMgO impurity. 
By comparing figures 4 and 5 we can estimate that with low excitation energies (126.5 eV, 
129eV and 132.2eV) the energy shift of the resonance Auger structure relative to the 
corresponding normal Auger structure is 1.5f0.5 eV for the N4,s02,3N6,, resonance 
Auger and 1.0f0.5 eV for the N4,s02,30z,3 resonance Auger. The overlap with the 5 ~ , , ~  
autoionization structure disturbs the energy estimation for the NON resonance AP. Also, 
when studying the N O 0  resonance structure we have to bear in mind that the spectra 
have been normalized relative to the 5p,,, photoline. Thus some of the structure might 
be caused by 5s autoionization because there is no reason to believe that 5s and 5 ~ , , ~  
autoionization channels would have exactly equal relative strengths. 

0 - P  Sairanen and S Akrela 
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Figure 5. The normal Auger speclrum of solid samarium measured with 18OeV photons. 

When the excitation energy increases the kinetic energy shift decreases for both 
Auger-like processes. At 135.5eVand 137eVexcitation energies therecan still be found 
some shift (-0.5eV) for the N4,s02,3N6,, structure. This structure might therefore be 
a mixture of normal and resonance AP. At the main giant resonance excitation both 
structures have thesame kineticenergyas in the Auger spectrum (figure 5) and therefore 
they can be regarded as pure normal AP. 

Our results show that the excited electron remains as a spectator near the first 4d 
ionization edge, at photon energies corresponding to the fine structure in the electron 
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yield spectrum. But when the excitation energy approaches the main giant resonance the 
excited electron can escape into the continuum leading to  normal Auger decay processes. 
It is also interesting to notice that the strength of the autoionization decay clearly 
decreases when resonance Auger processes begin to change into normal AP. 

As compared to our earlier studies for Eu, Gd, Tb and Dy the biggest differences can 
he found in excitations corresponding to the main broad resonance. In all of these cases 
autoionization through the 4f subshell is the main decay channel, but in samarium direct 
ionization followed by normal Auger processes is much stronger than in those heavier 
rare-earth metals. This indicates that the 4d -+ 4f giant resonance is more of continuum 
character in light rare earths than in heavy rare earths. 

4. Conclusions 

In this paper we have studied the decay processes in solid samarium after resonant 
4d-4f excitations. Especially we have looked for possible resonance Auger effects. 
The N4,502,302,3 and N4,502,3N6,7 resonance Auger decays were found to be significant 
decay channels in excitations corresponding to the low-energy-side fine structure of the 
resonance region. Kinetic energy shifts relative to  the corresponding normal AP were 
estimated from the experimental spectra to be 1.OeV for the N,,50,,,02,3 process and 
1 S e V  for the N,,502,3N,,, process. In the excitations corresponding to the main giant 
resonance the kinetic energy of the Auger electrons were the same as in the pure Auger 
spectrum indicating that the excited electron can escape to the continuum before the 
decay process. The intensity of the AP relative to the dominant 4f autoionization decay 
was found to be stronger than what has earlier been found for Eu, Gd, Tb and Dy. This 
suggests that the 4d -4f giant resonance has more continuum character in samarium 
than in heavier rare-earth metals. 
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